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AN  ADAPTIVE  FINITE  ELEMENT  SCHEME  FOR  HYDRAULIC 
FRACTURING  WITH  PROPPANT  TRANSPORT 
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SUMMARY 
A mathematical model and adaptive finite element scheme are developed for describing the distribution of 
proppant in a propagating hydraulic fracture. The goveming equation for proppant concentration is derived by 
applying the conservation law of mass to the proppant and to the proppant-laden  fluid. Shah’s empirical equation, 
which relates the  proppant concentration and the indices of the non-Newtonian  fluid, is used to describe  the 
proppant-laden  fluid.  The proppant distribution inside  a hydraulic fracture can then be obtained by solving the 
proppant concentration equation together with  the goveming equations of fluid  and elasticity for a hydraulic 
fracturing. A novel moving grid scheme is developed that combines grid point insertion with redistribution. Four 
examples corresponding to different in situ stress distributions are computed to demonstrate the scheme. 0 1997 
by John Wiley & Sons, Ltd. 
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1.  INTRODUCTION 

Hydraulic fracturing of reservoirs  has  been  employed  to  enhance oil and  gas production  for  more  than 
40 years. In a typical ‘process’  a  frac-fluid  slurry  composed of a  mixture of a  fluid  and  proppant  such 
as coarse sand  is  pumped  at  high  pressure into a selected section of the well-bore.  The  fluid  pressure 
generates  a  fracture  extending into the  rock  medium.  The  width of the hydraulic  fracture is 
maintained  by the proppant  transported into the fracture by the frac-fluid. This method  has  proved to 
be an effective and economical  method for stimulating production  from  a  declining  reservoir.  Since 
the fracturing process is conducted  at  a great depth, the minimum  compressive  stress  in  the  rock 
medium  is  in the horizontal direction and  the  hydraulically  induced  fracture  is  a  vertical  fracture 
(Figure 1). It  has also been  established  experimentally that the height of the hydraulic  fracture is 
controlled largely  by the vertical  distribution of the  minimum in situ stresses. 

The  propagation characteristics of a  hydraulically  induced fracture are important  in  designing  a 
fracturing process.  Knowing  the  reservoir  rock properties, in situ stress  distribution  and  frac-fluid 
properties,  an accurate prediction  regarding the opening  width  and  shape  of  the  fracture  is  sought for 
a  given  pumping  rate and time.  The fist true  3D fracture model  was  developed  by  Clifton  and  Abou- 
Sayed.’”  More  recently this model  has  been  extended  to  include  multiple  fluids,  proppant  transport 
and  thermal effects as well as layered  formations  with different elastic  moduli  by  Clifton and 
Other  3D  fracture  models  or  codes  based on the  same  field  equations  but different solution 
methodologies  were  developed  by C l e q  et a1.4 and Gu and Yew.’ The  model  developed  by Gu and 
Yew  has  a superior approach  to the fracture  problem  but does  not include the analysis and effects of 
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Figure 1. Configuration of a hydraulic  fracture  (not to scale) 

proppant  transport  inside the hydraulic  fracture.  The  present  research  addresses this problem and 
extends their approach  to  include  finite  element  analysis  of  coupled  proppant  transport  with  fracture 
analysis.  It also addresses the need for improved  grid strategies, since  the  simulation  of this type of 
problem is known  to  break  down  because  of  excessive  grid  deformation  during fracture growth. 

The  present  treatment  is  organized  in  the  following  manner.  The  governing  equations  for the 
propagation  of  a  hydraulic  fracture and the  solution  methodology  in the GY-4M model  of Gu and 
Yew’ are briefly  summarized  in  Section  2.  Next the governing  equation  for the proppant 
concentration  inside  a  hydraulic  fracture  is derived in  Section 4 by applying the  law of conservation 
of  mass  to the slurry and Fick’s  law of mass diffision for  a  binary  system.  Shah’s  empirical  equations 
are  then  employed  to relate the  corresponding alteration of the  rheological  properties  of  the  slurry. 
Knowing  the  rheological  properties  of  the  slurry  flow, the fluid  pressure  and  fracture  opening  width as 
well as the propagation  of  a  hydraulic  fracture  can be computed  from the governing  equations.  The 
development  of  the  proppant  concentration  equation  and the implementation  of this equation in the 
solution  algorithm  are  presented.  Some  programming  and  computational aspects are given  in  Section 
5 and  numerical  results  for  several  important  and  representative  test cases follow in Section 6 .  

2.  FRAC-FLUID  EQUATIONS 

In  the  following  derivations the frac-fluid  slurry is assumed  to  be  an  incompressible  non-Newtonian 
fluid,  with the apparent  viscosity q of  the  fluid  described  by  a  power-law  model6 as 

where  [D]  is  the  rate-of-strain  tensor for fluid  velocity v, n is the power-law  index and k is the 
consistency  coefficient of the  fluid. Later we defhe how k and n depend on the  proppant 
concentration c in the  slurry. 
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HYDRAULIC  FRACTURING  WITH  PROPPANT  TRANSPORT 647 

In a hydraulic fracture the slurry flows inside a large but narrow opening with  the ratio of length to 
width of the order of lo4 or higher. Owing to the narrowness of the fracture opening, the fluid 
pressure variation across the fracture width  (2-direction) is negligible and the derivatives of the  fluid 
velocity components in the x-y plane with respect to z are much larger than are the other derivatives 
of the velocity components. Taking the assumption of narrow fracture opening width into 
consideration, the continuity equation of the slurry can be written for the  two-dimensional fracture 
section Q as 

or 

a 
- ( P 4  + v ' = -41Pf 1 at (3) 

where p is the density of the slurry, pf is the density of the fluid, W is the fracture width  and v, and vv 
are the velocity components in the x- and y-direction respectively. The term q1pf on  the right-hand 
side of the above equations is  the mass flow rate of fluid that leaks through the porous fracture surface 
into the  rock  formation. The leak-off volume rate per unit fracture area may  be modelled by an 
empirical formula q1 = 2c1/Jt - z(x, y)], where c1 is the leak-off coefficient  which  is to be 
determined experimentally, z(x, y)  is the time at which the  fluid s t a r t s  to leak off at position (x, y)  and 
t  is  the current pumping time. 

It can be shown,7 by considering the linear momentum equation and neglecting the sedimentation 
of proppants, that  for  a power-law fluid  the  flow rates are related to the pressure gradient by 

Substituting equations (4) and ( 5 )  into equation (2) gives the  following governing equation for  the 
frac-fluid: 

Next let us consider the corresponding boundary conditions. The boundary of the flow domain can 
be divided into three portions, X 2  = asZp U K!, U m f ,  as shown in  Figure 2. The vertical section asZp 
is along the perforated region -y, < y < y,, x = 0 through which the frac-fluid and proppants are 
pumped into the fracture. The flow condition here can be written as 
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t 
Figure 2.  Illustration of boundary of flow domain 

where qo is the  given  pumping  rate  of  the  mixture of frac-fluid and proppants  (slurry)  per  unit  length 
of the perforated  region  and p. is  the density of the slurry in the perforated region.  The  remainder  of 
the vertical  symmetry  section is denoted m, and from  symmetry the flow  here is zero.  The  flow rate 
normal  to the fracture  front  is also zero. This implies 

Following  Bui,*  the equation which relates the surface  traction and fracture  opening  displacement 
may  be  written as 

where r is the distance  between the source  point (X‘, y’) and a  field  point (x,  y ) ,  a(x, y )  is the in situ 
stress  and G and v are the  shear  modulus  and  Poisson  ratio  respectively of the rock  medium.  Note  that 
in  view  of  the  fracture  assumptions the fracture  surface  may be taken as planar and  hence the flow 
domain  and  fracture  surfaces are both  taken as R. The  boundary  condition  for the above  equation is 
that  the  fracture  opening  width is zero along the fracture front, i.e. w(x, y ,  t )  = 0 on m,. 

Equations (6)  and (9) can be solved  numerically  for p(x, y )  and w(x, y )  by  applying the finite 
element  method. 

2.1. Finite  element  formulation 

The  planar  fracture  surface  is  discretized  by  a strip of quadrilateral singular elepents along the 
fracture  front (to model the stress singularity at the fracture tip), with triangular elements  in the 
remainder  of  the  mesh.  The  pressure p and fracture  opening  width W are approximated  by 

N N 
P(X,  Y )  = C 9i(x,  YlPi, 4 x 9  Y ,  t )  = C 9i(x* Y)wi(t). (10) 

i= 1 i= 1 

where [ q ! ~ ~ ]  are  the  basis  functions  and bi] and [wi]  are the  nodal  values of the approximate  solution 
for  the  fluid  pressure  and  the  fracture  opening  width at nodal  point i respectively. 
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HYDRAULIC  FRACTURING  WITH  PROPPANT  TRANSPORT 649 

The weak integral forms of equations (6) and (9) are then discretized, leading  to  the  coupled 
systems 

where 

Natural boundary conditions apply on the  boundary of the domain for the  fluid equation (6). 
Moreover, the mass of sluny pumped  into the fracture must equal the sum  of the mass leaked off 
through the surface and the mass inside the fracture, i.e. 

The time derivative awlat in equations (15) and (17) can  be approximated by a  backward  finite 
difference method as 

where dm) and w ( ~ - ' )  are the fracture opening widths at time steps tm and tm-l respectively. 
On discretizing (17), this compatibility condition leads to a relation for time step At of the form 

where  index m is the  time step. Hence the time increment At is determined simultaneously with the 
unknowns p and W. 

Equations (1 1) and (12) which govern the hydraulic fracturing process are  non- linear, time- 
dependent and involve a  moving  boundary. A quasi-steady process is assumed. Consider the fracture 
at time tm- l .  Let the location of the fracture front be denoted as aSZ"-' and the fracture opening width 

During the next time step At the frac-fluid continues to be pumped into the fracture, causing 
an increase in the fluid pressure, in  the fracture width and  in the stress intensity factor at the fracture 
front. When  the stress intensity factor exceeds the fracture toughness, the fracture front  advances. 

Solution proceeds by iteration until  a convergent fracture width  is obtained according to 

where E is the tolerance and I is the iteration index. In  the present work the value of E was taken as 
10-6. 
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The  incremental  distance Ad swept  by  the  moving  fracture  front  in  a  given  time  increment is 
related  to  the  calculated stress intensity factor KI and  the critical stress intensity factor KIc of the rock 
medium  by  the  equation’ 

where Q is  the  local in situ stress  at the fracture  front, H is the  local  fracture  height, h is  the  depth of 
fracture  in  the  high in situ stress layer  and C and y are material  constants.  Here the advancement of 
the  fracture  front  is  controlled  by the in situ stress Q and  by the depth h of the fracture in the high- 
stress  zone. 

3. ADAPTIVE REMESHING 

The  major  difficulty  in  hydraulic  fracture  problems is that the size  of  the  final  domain  is  much larger 
(say  10  or  more times larger after some 30 min  of injection) than  that of the initial  domain and the 
configuration  of  the  domain  will be significantly  changed as the fracture  propagates. An automatic 
and  domain-adaptive  remeshing  scheme for studying the propagation  of  hydraulic fractures is 
presented next. The  techniques  of  smoothing  and  Delaunay  triangulation are employed  to  ensure the 
regularity  of elements and  the  smoothness  of the mesh.  In  addition,  a  scheme for adding  new  nodal 
points (and  consequently  new  elements) to refine  the mesh is  used  when  the  fracture  domain is highly 
contained  or  significantly  changed in size. 

First  the  nodes  on  the  fracture tip are  moved  to  the  new  fracture tip position.  Based on the set of 
nodal  points  generated on the  fracture  front,  we  can  easily  create  a  corresponding  set  to  define  a 
narrow  strip  of  quadrilateral  elements.  These  points on the strip of  quadrilaterals also serve as the 
boundary  points  of  the  inner  region  to  be  triangulated.  Before  retriangulation,  however, points in the 
interior  are  ‘convected’  proportionally  with  the  advancing  fracture tip by  taking  a  weighted  average 
of  the  co-ordinates  with  those  of the surrounding  nodes (in a  manner similar to  a Gauss-Seidel 
update).  Hence  nodes  near the fracture tip have  proportionally  higher  convection  than  those far away 
from  the tip. 

As the  fracture advances, the domain  and  fracture  boundary  increase in size.  New  nodal  points are 
inserted  on  the  fracture  surface as follows.  Let the node spacing hi be  defined  as the distance  between 
two  adjacent  nodes i and i + 1  on KJf. Let hmi, be  the  minimum  node  space  along the boundary.  The 
criterion  for  front  refinement  is hi/h- > 8, where 8 is a  specified  parameter  to  control the spacing. 

Following the insertion of new  nodes  on the boundary,  the  ratio  between the adjacent node 
spacings,  defined as 

hi pi = - for i = 1 , 2  ,..., N b - l ,  (22) 
hi- 1 

is checked  to  ensure the smoothness of the  boundary  node  gradation.  Two parameters, pmh and pm=, 
are  introduced  to  determine  whether  local  smoothing  is to be  applied if pi is betweed pmh and p-, 
there is no  need for smoothing; if pi > p-, node i is moved  proportionally  towards  node i + 1 and 
vice  versa. 

As the  domain  grows,  new  nodes  must also be added in the  interior  and  then the domain  remeshed. 
First,  points are inserted and repositioned  on the boundary as indicated above. Next, new  nodes are 
inserted  at  the  centroid of interior  triangles  that  exceed  a  specified  relative area ratio.  The  node  point 
locations are locally smoothed  based  on  adjacent  node  positions  and  angles.  Finally  a  new  Delaunay 
triangulation  is  constructed. 
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HYDRAULIC  FRACTURING WITH PROPPANT  TRANSPORT 65 1 

As an example, the remeshed grid for the propagation of a hydraulic fracture under the action of a 
uniform in situ stress distribution is shown in Figure 3(a). The elements in the remeshed grid have 
nearly the same size and  the elements are distributed uniformly in the grid. The grid shown in  Figure 
3(a) also demonstrates the capability of the scheme to insert nodes on the  boundary as well as inside 
the domain. After 30 min of pumping, the number of elements increases from the original 82 to 204. 

Similarly, Figure 3(b) shows the  final grid (after 30 min of pumping) for  a hydraulic fracture under 
an in situ stress contrast of 50 psi.  Comparing  with the uniform in situ stress case, more  boundary 
nodes are inserted, since the fracture is contained and the boundary of the domain is slightly 
elongated. As a consequence, one can  expect  the numerical results based  on the remeshed grid to be 
more accurate than those from the old  grid.  In this case  the  number of elements increases from 82 to 
202. 
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Figure 3. Final  meshes after 30 min of pumping 

0 1997 by John Wiley B Sons, Ltd. INT. J. NUMER. METHODS  FLUIDS, VOL 24: 64-70 (1997) 



652 S. OUYANG, G. F. CAREY AND C. H. YEW 

Figure 3(c) shows the final grid for  a  hydraulic fracture under  a  high in situ stress contrast of 
400 psi. By applying the present remeshing scheme, it is seen that again the elements are relatively 
uniformly distributed and there are no slender elements in  the domain despite the elongation of the 
fracture. The  accuracy of the computation is therefore maintained as the fracture propagates. The 
number  of elements increases from 76 to 264 in this case. 

Finally, under the action of a complex in situ stress distribution, we obtain the  final mesh shown in 
Figure  3(d).  Again  the elements are uniformly distributed in the domain and there is no element 
overlap in  the  kinked  region. In this case the number of elements increases from 82 to 262. 
In each of the above cases the computation breaks down  in  the absence of point insertion, 

smoothing and Delaunay triangulation. In  the fourth case, for example, the computation fails very 
early  in  the simulation owing to element overlap near  the concave region resulting from the complex 
in situ stress contrast. 

4. PROPPANT TRANSPORT 

In hydraulic fracturing operations the fracture is &st initiated with a  fluid of low viscosity and then 
followed  by  fluids  (or gels) containing proppants. The use  of  a low-viscosity fluid in the initial phase 
of fracturing is to reduce the fiction loss during the fracturing process. The proppant- laden fluid  is 
later introduced into  the fracture to maintain the fracture opening width during and after the 
fracturing operation. 

Let the  volume concentration of the proppant, c(x, y, t), be  defined as the  volume of proppant per 
unit volume of slurry (fluid + proppant): c(x, y, t)  = Vp/ V, where V, is the volume of proppant in 
slurry  volume V. Similarly, let pps be the total mass of proppant per unit volume of slurry. Then, by 
definition, 

Let w(x, y, t )  be the fracture opening width  and  let wqP and wqpy be the x- and y-components of 
the mass flux vector wqp for the proppant. Mass conservation of proppant then implies 

The proppant flux qp is the product of pps and the proppant component velocity vp, i.e. qp = ppsv 
This velocity  can  be related to the bulk  fluid velocity by introducing the diffusive proppant flux JP: '0 

q p  = PPS" + JP' (25) 

In turn, JP can be modelled by Fick's law as t 

where wp=pps/p is the mass fraction of proppant. Combining these relations, we obtain the 
governing equation for proppant transport in terms of the mass concentration: 
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In existing hydraulic fracture models the molecular diffusion is small and  the fracture flow is taken 
as laminar at constant temperature. Hence  the diffusivity in (27) is negligible. In applications it is 
more convenient to use the volume concentration c of the proppant in place of the  mass concentration 
pps. Substituting (23) into (27), we  then obtain 

a 
- @ P p W )  at + v ' (cp,wv) = 0. 

The mass of the slurry, pV, is  the  sum of the mass of the proppant, ppV,, and  the mass of the frac- 
fluid, pfVf, i.e. pV=pfVf+p,V, ,  where Vf is the  volume of the  frac-fluid. Notice that V,= V - V, 
and c = V,/V, so p = cp, + (1 - c)pf. Substituting these relations into the fluid equation (3), 

Subtracting equation (28) from equation (29) and observing that pf is constant for an 
incompressible fluid, the concentration of proppant satisfies 

The  first term of the equation is the change in proppant concentration in the fracture with time. The 
second and  third terms represent the change in proppant concentration by convection of the  slurry 
flow. The fourth term involves  the effect of the change in fracture opening width  on  the proppant 
concentration as the fracture propagates. The h a 1  term shows the effect of the  leak-off of frac-fluid: 
the  more the frac-fluid leaks, the higher is the concentration. The boundary conditions become c = c, 
on X+, and %/an = 0 elsewhere. Initially, c(x, y, 0) = 0 in R. Physically, when the width is too small 
near the fracture front, the proppant cannot pass through to the fracture tip, so the concentration in 
this region is zero; that is, for  a  node i ,  if wi d, then ci = 0, where d is the diameter of the proppant. 
This condition may be applied in  the vicinity of the fracture front. 

It  is  well-known  that  the rheological property of the fluid  (or slurry) is altered by  the  presence of 
proppants. Here we make  the  usual assumption of power-law behaviour. The empirical relations of 
Shah'' for power- law index n and consistency coefficient k introduced in  the  present work; that is, 
we set 

n = Ae", k = Pe@, (3 1) 

where A, B, P and Q are parameters which  depend  upon the properties of a particular fluid  and  the 
proppant and have to be determined by experimentation. 

An extensive experimental study on  the correlation for a particular fracturing slurry has been 
carried out  by  Shah.  Based  on  the experimental data, the corresponding values of constants A, B, P 
and Q can  be determined by  using  a  curve-fitting technique with the exponential model. These values 
are listed in Table I  for different proppant concentrations and  will  be  used in the numerical  case 
studies later. 

After solving for the proppant concentration distribution, the nodal values of the index n and  the 
consistency coefficient k of the  power-law  model for the  non-Newtonian  fluid can be calculated and 
then applied to calculate the pressure p .  
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Table I. Parameters  for  power-law  index n and  consistency  coefficient k (from 
Reference 11) 

Temperature (“F) HPG/MGAL A 

30 LB 0.53 
80  40 LB 0.40 

60 LB 0.28 

30 LB 0.56 
110  40 LB 0.48 

60 LB 0.39 

30 LB 0.58 
140  40 LB 0.5 1 

60 LB 0.40 

B P Q 
-2.29 
-3.43 
-4.2 1 

-1.41 
-2.38 
-3.33 

- 1.26 
-2.32 
-3.42 

0.0068 
0.0304 
0.1089 

0.0050 
0.0161 
0.0659 

0.0038 
0,0095 
04497 

6.5 1 
6.38 
4.71 

6.45 
6.60 
5.58 

6.58 
6.98 
6.01 

4.1. Finite element implementation 

A variational form for the proppant transport problem  on a fixed domain  can be constructed  by 
introducing weighted residual projections for the governing partial differential equation (30): 

Integrating (32) by parts and  using the relations (4) and (5) for the velocity components,  one 
obtains 

On the boundary sections aRf and asZ,, ap/an = 0. The  weak  statement  of the proppant 
concentration  equation  becomes:  find c satisfying c = cp on X$ and  such that 

a4 h 
ax  at (1 - c)wv, - + ( 1  - c)wv, - ( 1  - c)q -]dxdy = In q&dy (34) 

for all admissible test functions q with q = 0 on X $ .  Note that wv, and ww, are defined in terms  of 
pressure and fracture width  by (4)  and (5). 

The  concentration c is approximated  by  using  piecewise  polynomial finite element basis functions 

and  the test functions are taken as { $ i ) .  
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Substituting into (34) and using (4) and ( 9 ,  we obtain the semidiscrete system of ordinary 
differential equations for the concentration 

or, compactly in matrix form, 

In  the following computations a (dissipative) backward difference scheme is applied; that is, in each 
time step we solve 

([A]" + A ~ [ B ] " ) { c } ~  = [A]"(c]"-' + AtIfc}", (38) 

where [A]  depends on  the current solution W" for the fracture width. The effect of including the 
pressure  and fracture width relations explicitly in (36) is  to stabilize the resulting Galerkin scheme as 
seen in  the  following  numerical experiments. 

5. COMPUTATIONAL  ASPECTS 

The solution for  the pair W, p and the proppant concentration c is decoupled within each time step in 
the  manner indicated by  the algorithm in Figure 4. 

5. I .  Performance  studies 

In order to assess the  efficiency  of  the implementation, the performance for  the  major subroutines 
in  the  code  is checked and is summarized in Table 11. These timing statistics are  for  the  Sun Sparc 
Workstation (4-75) and indicate that  about one-third of  the  CPU time is  used  for forming the fracture 
stiffness matrix [Kw] because  of the calculation of the double integral in  the fracture opening 
equation, while  about  one-fifth of the  CPU time is spent forming the sparse  fluid stiffness matrix [K,]; 
the Gaussian solver for  the linear fracture and  fluid  systems is also a major  CPU  time consumer. 
Since [Kw] is a dense matrix and [K,] is a sparse matrix, a regular Gaussian solver is employed for 
[Kw] whereas a banded solver is employed for [K,]. As expected, as the  total  number of nodes 
increases, the percentage of CPU time spent in the Gaussian solver grows  non- linearly: the regular 
Gaussian solver has a time complexity of 0 ( n 3 ) ,  where n is  the number of nodes,  and  the  banded 
Gaussian solver has a time complexity of O(b;n), where b,  is  the  bandwidth. An iterative solution 
such as the biconjugate gradient method  may also be applied for the pressure system. In fact, even  for 
full systems such as the  dense matrix problem in a boundary  element formulation these Krylov  space 
projectors may be faster than  direct elimination, since  the  boundary element systems are frequently 
well- conditioned. By optimizing the  node numbering, we  may reduce the  bandwidth b, and  improve 
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l Yes 
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Figure 4. Flow chart of programme GYCO-PT 

Table 11. Timing  statistics of code  performance (%) 

Number Form  Form K,,,, Kp Solve 
of nodes K, KP solver proppant  Remesh  Other 

63  36.6 244 28.8 0.8 1 *5 7.9 
99 34.2 21.5 35.8 0.8 1 e2 6.5 

116 324  18.5 42.2 0.6 1 .o 5.3 
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the performance of the Gaussian solver. The remesh scheme is very efficient  and  required  only  about 
1 per cent of the CPU time. Finally, less than  1  per  cent of the run time is spent solving the  proppant 
concentration problem. 

Owing to the nonlinearity, the fracture width W and  fluid  pressure p are  adjusted  by iteration within 
each time step. The following relaxation strategy is also applied within each iteration: 

J 

where a is the relaxation parameter. This method provides a linear extrapolation of the  solution 
between the computed value and  the  value at the previous iterate level. In order to choose a as large 
as possible in the iteration process  and still maintain convergence, an adaptive relaxation factor aad is 
used  in the iteration process.  If  an increase in the sequence of I {W}!: \  - {w}?)I occurs during  the 
iteration process, we reduce the  value of a proportionally. In order to obtain improved convergence, 
the starting value of aad is chosen  based  on  the behaviour of the individual hydraulic fracture 
problem. For  a ‘smooth’ hydraulic fracture problem (such as uniform or slight in situ stress contrast) 
a larger starting value of a can be  set at the beginning of the iteration process, whereas for a  ‘tough’ 
one (such as a complex or high in situ stress contrast) a relatively smaller starting value of a should  be 
chosen. Generally speaking, for our hydraulic fracture problem a starting value of a between 0.2 and 
0.3 is preferred at the  beginning of the iteration process. 

6.  RESULTS 

Since the behaviour of a hydraulically induced fracture and the associated proppant distribution are 
very sensitive to the in situ stress distribution, four different distributions of in situ stresses are 
considered. The formation properties, frac-fluid properties, fluid leak-off coefficient, initial fracture 
geometry and pumping schedule are the same for all the cases and are given in Table 111. The in situ 
stress distributions and  the corresponding parameters used  for remeshing in each case  are different 
and  are  also given in Table 111. 

6.1. Uniform in situ stress 

The hydraulic fracture for  a uniform in situ stress is expected to be  a circular fracture. The final 
mesh is shown  in Figure 5(a) and  a sequence of fracture front contours in Figure 5@) .  The variations 
in the  net  borehole  pressure and maximum fracture opening width during the entire fluid injection 
period are shown in Figures 5(c) and 5(d) respectively. The existence of proppants in  the  fluid causes 
increases in the net borehole pressure  and fracture width. Also, as the proppant concentration 
increases, the increments in  the net borehole pressure and fracture width become large. These results 
are expected, as the fluid  becomes  more viscous when  the concentration of proppant inside the 
fracture increases. The shape of the hydraulic fracture and distribution of proppants at t = 1 1, 12,22, 
28 and 30 min after the initial fluid injection are shown in Figures 6 and 7 .  Since the in situ stress 
distribution is uniform, the hydraulically induced fracture is circular as expected. The fluid is injected 
through a perforated length of 80 ft into the fracture. The proppant concentration is zero (c = 0) 
during the first 10 min of injection and the proppant concentration during the  second stage of 
injection (10-20 min) is 3%. Consequently, the proppant concentration in  a large region immediately 
behind the fracture front is zero and  the concentration then increases slowly from zero to 3% in  the 
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Table 111. Input data 

Formation andjuid properties and  initial fiacture geometty 
Young modulus lo6 psi Perforated zone 80.0 ft 
Poisson rat0 0.3 Initial fracture length 20.0 ft 
Fracture toughness 1000 lb Initial fracture height 100.0 ft 
Leak-off  coefficient 0.0005 ft min-1/2 n = 0.48e-2.38c, 

k = 0.016e6'59C 

Pumping schedule 
Stage  Pump  time Injection rate Fluid density Proppant density Proppant 
no. (min) (bubbles/min) (lb R-') (lb W 3 )  concentration (%) 

1 0.0- 10.0 20.0 62.0 
2 10.0- 20.0 20.0 62.0 150.0 
3 20.0-26.0 20.0 62.0 150.0 
4 26.0-30.0 20.0 62.0 150.0 

- 0.0 
3.0 
5.0 

10.0 

In situ  stress  dish'bution 

Layer 
y-Co-ordinate (R) Stress (psi) at interface 

Case no. Lower  Upper  Lower  Upper 

Uniform  1 - 1000~0 1000*0 0.0 0.0 
50 psi 1 - 1000~0 -50.0 50.0 50.0 
contrast 2 -50.0 50.0 0.0 0.0 

3 50.0 1000.0 50.0 50.0 
400 psi 1 - 1000~0 -50.0 400.0  400.0 
contrast 2 -50.0 50.0 0.0 0.0 

3 50.0 1000~0 400.0 400.0 
Complex 1 - 1000*0 - 140.0 200.0 200.0 
contrast 2 - 140.0 -90.0 0.0 0.0 

3 -90.0 -50.0 150.0 150.0 
4 -50.0 50.0 50.0 50.0 
5 50.0 1000.0 200.0 200.0 

Parameters for remesh  and  iteration 

50 psi 400 psi Complex 
Uniform contrast contrast contrast 

Maximum fracture tip movement (ft) 5.0 10.0 10.0 10.0 
In situ stress in payzone (psi) 0.0 0.0 0.0 50.0 
Relaxation factor (for iteration) 0.25 0.2 0.2 0.2 
No. of nodes along borehole 15 15 9 '  15 
j3 (for  boundary  node insertion) 1.52 1 *8 2.0 1 *9 
B (for boundary  node smoothing) 10.0 12.0 9.0 10.0 
q (for interior node insertion) 2.4 3.9 6.0 6-5 
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Figure 5. Resdts for uniform in situ stress 
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perforated region. The shape of proppant distribution inside the fracture is approximately elliptical, 
with  a decrease in concentration from the entry region towards the fracture front  region. The 
reduction of concentration due to convective flow of the hc-fluid is evident in Figure 6(b). 

The proppant concentration 2 min after the third stage of fluid injection (with 5% proppant) is 
shown in Figure 6(c).  The proppant concentration in the region near the perforation is 5 per  cent  and 
decreases to approximately 0.55% near the  front. The h a 1  distribution of proppant concentration 
4 min after the fourth stage of fluid injection (c = 10%)  is shown in Figure 7. The concentration of 
proppant in the region near the perforated zone is 10.6% and is approximately 1.1 % in the region near 
the fracture tip. The concentration contours are almost circular. 
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(a) after l1 Minutes  of Pumping (b) after  12  Minutes of  Pumping 

X X 

(c) after  22  Minutes of Pumping (d) after 28 Minute$ of Pumping 
Figure 6. Proppant concentration under uniform in situ stress 

INT. J.  NUMER. METHODS FLUIDS, VOL 2 4  645-670  (1997) 0 1997 by John Wiley & Sons, Ltd. 



HYDRAULIC  FRACTURING  WITH  PROPPANT  TRANSPORT 66 1 

rMin= 0. Proppant Concentration 
0 Max= 0.106 Y 

m 

1 so 

l00 

so 

0 

-so 

-100 

-1so 

0 

Figure 7. Final  distribution of proppants  (after 30 min of pumping) 

6.2. 50 psi in situ  stress  contrast  zone 

Owing to this low in situ stress contrast, the hydraulically induced fracture is expected to be 
partially contained and to have  the approximate shape of a triangle. In comparison with the  control 
parameters used  in the previous case (a uniform in situ stress), it is clear that the number  of  nodes  to 
be inserted along the boundary  and  in the interior is increased slightly to accommodate the shape of 
the fracture. The final mesh is shown  in Figure 8(a). A plot of the fracture front at different times is 
shown in  Figure 8(b). It  is seen that  the initial elliptical fracture gradually becomes triangular owing 
to the in situ stress contrast in the region. The proppant distribution is similar to that  in the circular 
fracture. The net borehole pressure  and  maximum fracture opening width are shown  in  Figures 8(c) 
and 8(d) respectively, which also show that  the pressure and fracture width with proppants  are  higher 
than  those without proppants. The calculated fracture shape and distribution of proppants after 11,  12, 
22, 28 and 30 min of pumping are  shown  in Figures 9 and 10. 

6.3. 400 psi in situ  stress  contrast  zone 

The hydraulically induced fracture is expected to be totally contained by the high in situ stress 
contrast. This implies that elements in  the  mesh  will  be  very elongated in  the direction of fracture 
propagation if remeshing is not applied. Therefore the grid must  be properly controlled to 
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(a) Final  Mesh (b) Fracture  Front  Contoura at Different Times 

(c) Net  Borehole  Pressure vs Time (d) Maximum  Fracture  width vs Time 

Figure 8. Results for in situ stress contrast of 50 psi 

accommodate this situation. More  nodes  are inserted along the  boundary  and  in  the interior region to 
prevent excessive elongation of the elements in the domain.  Since  the fracture is no6 expected to have 
a significant  growth  in height, the  number  of nodes along the  borehole is changed from  15  for  the 
previous cases to nine. 

The h a 1  mesh  for  the  problem  is  shown  in  Figure 1 l(a). There is  no excessively elongated element 
in the  domain  and  the distribution of  the elements is relatively uniform. The evolution of the 
hydraulic fracture front  is shown in Figure 1 l(b). The  hydraulic fracture is elongated and  there  is 
almost no fracture height  growth  in  this case. The time variations in  the net borehole  pressure  and 
maximum fracture opening  width  are plotted in Figures 1 l(c) and 1 l(d) respectively. The calculated 
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0. 

(a) after 11 Minutes of  Pumping (b) after 12 Minutes  of Pumping 

(c) after 22 Minutes of  Pumping (d) after 28 Minutes  of Pumping 

Figure 9. Proppant concentration  under in situ stress  contrast of 50 psi 

fracture shape  and distribution of proppants after 1 1 ,  12,  22 and 28 min of pumping are shown  in 
Figure 12. After 12 min of pumping,  the fracture has a total length of 350 ft  and  the distribution of 
proppant has the  shape  of an elongated triangle with  the  tip reaching to 120 ft. Note  that  the  proppant 
has a higher concentration in  the centre than near the  boundary  and  finally fails to reach the  boundary 
of the fracture, leaving a narrow  no-proppant  zone  along  the fracture contour. This phenomenon is 
expected, since the  flow of viscous fluid  is contained by  the  boundary  and the central region has the 
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Figure 10. Final distribution of proppants  (after 30 min of pumping) 

highest flow velocity. The fluid velocity distribution near the boundary has a larger error than in the 
interior region. This causes an erratic proppant distribution in the later stages of pumping, as shown  in 
Figure 12(d) by the  wavy contour line near the boundary.  If the number of elements is increased (at 
the  expense of a very  long computation time), the contours become smoother. 

From  the  final distribution of proppant shown  in  Figure  12(d),  we  see  that proppant accumulates 
near  the fracture tip after it reaches the tip. 

6.4. A complex in situ  stress  distribution 

The  final fracture shape  and  mesh  under a complex in situ stress distribution are shown in  Figure 
13(a). Refemng to  Figure  13(b), at the beginning of the process the  hydraulic fracture propagates in 
the 50 psi zone (for approximately 10 min),  since  the perforated zone is located in this zone; then the 
fracture breaks  through the 150  psi zone and  moves  into  the low-stress zone Idesignated as a 
reference pressure). Once the fracture reaches the low-stress zone, it has a faster propagation speed in 
this zone than  in other zones and  finally  the lower fracture catches up  with  the  upper fracture as 
portrayed  in  Figure  13(b). In this case, more  nodes  are  inserted along the  boundary and in the interior 
region to accommodate the complex fracture geometry. The corresponding time histories of the net 
borehole  pressure  and  maximum fracture opening width  are shown in Figures 13(c)  and 13(d) 
respectively. The changes in borehole pressure and fracture opening width as the fracture breaks into 
the  low-stress zone (at t = 10 min) are clearly shown in these figures.  The break into the low-stress 
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(a) Final Mesh (b) Fracture  Front  Contours  at Different Times 
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Figure 11. Results for in situ stress contrast of 400 psi 

zone  causes  sudden  decreases  in  the  borehole  pressure  and  fracture  opening  width,  but  these  increase 
again as the fracture  grows.  Again  the  presence  of  proppant  in  the  fluid causes increases  in  the 
borehole  pressure  and fracture opening  width. 

The  distribution  of  proppants after 11, 12, 22  and 28 min  of  pumping  is  shown  in  Figure  14. 
Referring  to  Figure  14(b), the proppants  in the lower  fracture  region  move  ahead  much faster than  do 
the  proppants in the  upper  part. 

The  distribution of the  fluid  velocity  in the fracture  must be very  complex  at this stage  of  fracture 
propagation. It is clear that  the  number  of  elements  used  in this calculation is not  sufficient to give  a 
detailed description of  the velocity distribution  in the region.  This  causes the irregular  proppant 
concentration  contours  shown in Figure  14(c).  Nevertheless,  a  qualitative  description of proppant 
distribution  in the fracture is obtained. 
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T 

(a) after 11 Minutes of Pumping (b) after 12 Minutes of Pumping 

(c) after 22 Minutes of  Pumping (d) after 28 Minutes of Pumping 
Figure 12. Proppant  concentration  under in situ stress contrast of 400 psi 

Table IV. Timing  statistics of different  cases 
~ ~~ ~ ~~~~~~~~~~~~ ~ ~~ ~~~~ ~ ~~ ~~ 

In situ Initial  number Final  number Number of Run time 
stress of nodes of nodes time  steps (min) 

Uniform 63 
50 psi 63 
400 psi 57 
Complex  63 

108  80  33 
155 83  84 
192  110  120 
245 92 161 

In the later stages, as the lower fracture grows  and catches up  with the upper fracture, the fluid 
velocity  in  the fracture slows  down and the  flow  pattern  becomes  nearly  uniform.  As  a  consequence, 
the proppant concentration contours become  smoother and more  distinguishable. 

The CPU time  and  number  of  nodes in the mesh are given in Table IV for calculation on a DEC 
Alpha APX 3000/400. 
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Figure 13. Results for complex in situ stress  contrast 

6.5. Concluding remarks 

Based on the results from the above examples, one can conclude that the  model is robust  and 
capable of handling different cases of interest. There are few experimental data or analytical results 
from other 3D fracture simulators presently available for making a quantitative verification of the 
results from this study. Clifton and  Wang3  used  a completely different slurry model in their study of 
proppant transport in  a proprietary 3D hydraulic fracture code (Terra-fiac). Since the equations used 
in the description of the slurry property are empirical in both studies, a correlation between the 
Wang-Clifton model  and this model is not feasible. A comparison of fracture shape, fracture opening 
width  and predicted net borehole pressure between this  model and the Terra-frac model  in  the 
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(c) after 22 Minutes of Pumping 
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(d) after 28 Minutes  of Pumping 

Figure 14. Proppant  concentration under complex in sifu stress 
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absence of proppant was carried out by Weng.” Weng demonstrated that the predictions from these 
models were indeed reasonably close, Therefore, if the concentration of proppant in  the slurry is low 
(e.g. less than 20 per cent), a close agreement between the predictions from  these  two models can be 
expected. 

Wang  and Clifton introduce an empirical ‘slip velocity’ (v,) to establish a relationship between the 
size of the proppant and the viscosity of the  fluid.  It appears that  the approach taken  in the present 
study using Shah’s results is more straightforward and easier to implement.  However, it is difficult at 
present to address the relative merit of these approaches. More basic studies on the fimdamental 
rheological praperties and  on  the  flow of a proppant-laden slurry in  a  narrow  channel are needed. 

The present study has also clearly demonstrated that the accuracy of the solution depends on the 
finite element grid used  in the computation and that the choice of grid for  the problem depends on  the 
distribution of in situ stresses. There are several subtle issues that arise regarding the coupling 
between the gridding problem and  the fluid-fracture calculation. First, for  a  given fracture shape the 
fracture width  and  fluid  pressure are simultaneously determined by non-linear iteration. This implies 
that the conservation properties are approximately satisfied  in the weak Galerkin sense. However, 
after node insertion the current approximate solution is interpolated to the new  nodes and the 
Delaunay triangulation will  make diagonal swaps that locally change the nodal patches. This implies 
that locally the conservation properties will  be matched to an order consistent with the finite element 
approximation error. In general a  fine grid system is required for an accurate result but at the expense 
of a  long computation time. Different grids could be introduced for the respective fracture and  flow 
problems and this would substantially improve accuracy and efficiency at the cost of increased 
computation complexity. Other schemes such as SUPG, Taylor-Galerkin or residual  bubble 
correction may also be introduced to treat the proppant transport more accurately and with less 
numerical dissipation. This is the subject of further study. 

The simulation results show  the effect of proppants in  the  fluid  on  the net borehole pressure and 
fracture width. This gives an improved understanding of the  fluid-fracture process. A grid 
enhancement scheme is developed and incorporated in  the computer program  for calculating the 
proppant transport and fracture propagation. The enhanced grid gives not  only an accurate result but 
also a  more robust computer programme. 
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